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An exact method of computing volume changes under high pressure from acoustic-wave-velocity measure-
ments is developed. It is applicable to large as well as small compressions. To illustrate the application
of the method, precision ultrasonic-velocity measurements made in mercury at pressures up to 13 kbar for
three temperatures have been used to compute V as a function of 7" and 2. The volume is determined to an
accuracy of better than 0.019 at each pressure and temperature. An analytical expression for the pressure
dependence of the volume in which all coefficients are expressed in terms of the bulk modulus and its
derivatives is developed and shown to give a better representation of the P-V data than many of the equa-

tions now in use.

INTRODUCTION

A FUNDANENTAL problem in high-pressure re-
scarch 1s the determination of the equation of
state of condensed materials. One experimental ap-
proach to this problem is direct measurement of the
volume as a function of pressure. Various methods
have been devised for this. For liquids Bridgman has
used a plezometer,'? a piston-displacement method,*=
and a sylphon-bellows device®™® which employs a po-
tentiometric length-measuring technique. The piezom-
cter yiclded volumes accurate to about 0.19, the piston-
displacement method to about 19, and the sylphon
bellows to a few hundredths of 19. For solids Bridgman
used a linear-compression technique® where the
change in length of samples relative to that of pure
iron is measured and, again, the piston-displacement
method.*=16 These methods have been refined by other
investigators. Cutler e/ al. and Boelhouwer® modified
the sylphon-bellows technique by employing an external
lincar-difierential transformer to measure the bellows
motion. Doolittle et al.® determined the change in
volume of a liquid by following the motion of a float

* Rescarch supported by the U.S. Office of Naval Research.
T Based on part of a thesis submitted by L. A. Davis to the
Graduate School of Yale University in partial fulfillment of the
requirements for the Doctor of Philosophy degree.
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at its surface with an external linecar-differential trans-
former. Accuracies of the order of 0.019, are attained.
To measure compression in solids to very high pressures,
a Debye-Scherrer x-ray powder pattern of a sample
compressed in an anvil device has been used. A review
of the earlier x-ray techniques is given by Jamieson
and Lawson®; newer methods are described by Barnett
and Hall and Perez-Albuerne, Forsgren, and
Drickamer.?2 A common problem in the x-ray methods
is that pressure determination is difficult so that the
volume results obtained are accurate to only about 1%,.
For compression measurements to ultrahigh pressure
(megabars), the shock-wave method is used. Deal®
has given a review of the techniques involved. The
question of accuracy is a difficult one here, but it is
certainly not better than 19, of the volume.

In all of the experimental methods enumerated above,
volume is measured directly as a function pf pressure.
An alternative approach, inherently capablé of yielding
higher accuracy, is to measure the pressure dependence
of the compressibility and then obtain volume as a
function of pressure by integration. The compressibility
and its pressure dependence may be measured to high
accuracy by acoustic methods. In 1949 Lazarus® initi-
ated development of the techniques necessary for
making sonic-velocity measurements to high pressure.
In his work on the elastic constants of cubic single
crystals he assumed the samples changed length as
though they had constant compressibility. In 1957
Cook? described a method of obtaining accurate volume
results from high-pressure sonic-velocity data. He em-
ployed the less restrictive assumption that the ratio of
the isothermal and adiabatic compressibilities is a con-
stant. This approximation is reliable when the com-

207, C. Jamieson and A. W. Lawson, in Modern Very High
Pressure Techniques, R. H. Wentorf, Jr., Ed. (Butterworths
Scientific Publications, Ltd., London, 1962), p. 70.

21 7, D, Barnett and H. T. Hall, Rev. Sci. Instr. 35, 175 (1964).

2 E. A. Perez-Albucrene, K. F. Forsgren, and H. G. Drickamer,
Rev. Sci. Instr. 35, 29 (1964).

%W, E. Deal, Jr., in Ref. 20, p. 200.

24 D, Lazarus, Phys. Rev. 76, 545 (1949).

2 R, K. Cook, J. Acoust. Soc. Am. 29, 445 (1957),
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20651 COMPRESSION OF MERCURY AT HIGH PRESSURE

pression is small, perhaps less than 19, which can of
course correspond to quite high pressures for very
incompressible materials. Since the velocity of sound
in a material can be determined to an accuracy of 0.19,
or better and this uncertainty enters the volume calcu-
lations as a relatively small additive term, volume
results to better than 0.01%, may be obtained. A sig-
nificant advantage of this method is that it yields
clastic constants and compression results simultane-
ously. '

A disadvantage of Cook’s approach is the restriction
to small compressions. In this paper we develop a
method which will allow the determination of accurate
volume data at high pressure from elastic wave-velocity
experiments regardless of the amount of compression
involved. To use this method, sonic-velocity data as
a function of both pressure and temperature are re-
quired; and the temperature dependence of the thermal
expansion, heat capacity, and density at room pressure
must be known. To illustrate the application of the
method, precision sound-velocity measurcments have
been made in mercury over a range of temperature and
pressures and used, in conjunction with available
thermodynamic data, in a precision determination of
volume as a function of pressure and temperature.

EXPERIMENTAL APPARATUS AND PROCEDURE

The velocity of sound in liquid Hg is determined as
a function of pressure and temperature by a variant
of the pulse-ccho technique originally developed by
Pellam and Galt.?® The liquid Hg is placed in a stainless-
steel sample holder, and the holder placed in a cylin-
drical pressure vessel. Pressure is generated by driving
a piston into the vessel and is transmitted to the Hg
by a liquid pressure-transmission medium. Electrical
leads are brought into the vessel through the base-plug
pressure closure. The pressure in the vessel is deter-
mined by monitoring the resistance of a coil of Au-
2.19, Cr wire, which is calibrated as afunction of
pm free-piston gauge. Experiments on the
variation of sonic velocity in Hg with pressure were
performed at three temperatures; 21.9°, 40.5°, and
52.9°C.

A pulsed oscillator, balancing network, preamplifier,
and amplifier obtained from the Arenberg Ultrasonic
Laboratory, Inc. are arranged as shown in Fig. 1.
A 5-Mc/sec pulse of 10-usec duration at a 60-cps repe-
tition frequency is used, and the pulse and sample
cchoes are displayed on a Tektronix 547 cathode-ray
oscilloscope (CRO). It is somewhat difficult to make
highly accurate, absolute wave-velocity measurements
by the simple pulse-echo technique since it is difficult
to account for the relative phase shift between echoes.
Thercfore, in this work the change in transit time
relative to the transit time at 1 atm is measured using

% J. R. Pellam and J. K. Galt, J. Chem, Phys. 14, 608 (1946).
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T16. 1. The high-frequency-pulse equipment.

the first echo only. The initial transit time is computed
from the l-atm sonic-velocity data for liquid Hg of
Hubbard and Loomis¥ (accurate to 0.029,) and the
known length of the sample. Correction for the change
in sample length due to T and P was made using the
measured linear-expansion coeflicient for the Type 303
stainless steel used for the sample holder® [16.2X
107%(°C)~1] and Bridgman’s lincar-compression data
for Fet!t [—Al/l,=1.904X107P—0.22X 107 P* (for P
in bars)]. Since the magnitude of the length change is
small, high accuracy is not needed in making thesc
corrections.

The change in transit time was determined using a
variable-Hg delay line consisting of a pot of Hg with
a quartz transducer at its bottom and a stecl reflector
inserted into it from the top. The reflector is connected
to a micrometer screw so that changes in its position
can be accurately determined. At the outsct of cach
particular high-pressure experiment, a convenient cycle
of the unrectified first echo from the specimen and
from the delay line is placed in phase on the CRO by
adjusting the level of the reflector in the delay line.
With the unrectified signals the cycles can be matched
to within #41.4 nsec. With application of pressure to
the sample a change in transit time results causing a
shift in position of the sample echo on the CRO. By
adjusting the reflector height in the delay line the same
cycles were again brought into coincidence. The change
in transit time is then given by A/=2Ad/c, where Ad
is the change in micrometer reading and ¢ is the sonic
velocity in Hg at room temperature and 1 atm. After
application and release of pressure, the transit time is
found to return to its original value to within 1.4 nsec.
In each pressure run half the data points were taken
with increasing pressure, and half, with decreasing
pressure. Since the delay-line micrometer permits the
transit-time change to be determined on the average
to about 0.06% and since the sample length can be
measured to about 0.03%, the change in velocity is
determined to about 0.09%. The absolute velocity it-
self, however, is determined to 0.049%, including the

21 J, C, Hubbard and A. L. Loomis, Phil. Mag. 5, 1177 (1928).
2 Melals Handbook, L. Lyman, Ed., (American Society for
Metals, Cleveland, Ohio, 1948), p. 553.
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F16. 2. The sample holder for liquid Hg (dimensions in inches).

uncertainty of the 1-atm data of Hubbard and Loomis,
since the velocity change is only a fraction of the
calculated velocity.

The sample holder for the liquid Hg, shown in Fig. 2,
was constructed from Type 303 stainless stecl. It is
closed at the bottom by the quartz transducer and
fitted at the top with a 1.2-cm-diam reflector set accu-
rately parallel to the transducer. Holes in the reflector
top allow the pressure-transmission fluid (pentane or
hexane) to bear on the Hg. A final cap, which contains
small holes out of line with those in the reflector top,
is threaded into the reflector top. This cap acts as a
baffle for preventing Hg from escaping from the top
of the holder. Loss of mercury into the steel pressure
vessel often results in an embrittlement of the latter
and an explosive failure.

The diameter of the transducer surface in contact
with the liquid Hg (1.9 ¢cm) constitutes the sample
diameter. Since the wavelength of 5-Mc/sec ultrasonic
waves in liquid Hg is about 0.03 cm, the sample-
_diameter-to-wavelength ratio is about 60, well above
the figure of 20 which Mason® cites as the minimum
“allowable value if the sound pulses are to be propagated
as if the sample were infinite. The sample length over
Which the sound pulse radiates as a plane wave (the
Fresnel region) is determined by the diameter of the
radiating surface and the wavelength of the sound.®
In the present case, where the reflector diameter is the
limiting diameter, it can be shown that the Fresnel
region extends for 22 cm. Therefore, the echo of im-
portance here (the first echo), which travels a distance
of about 7.8 cm, is well within the plane-wave region.

The high-pressure system used in this work is the
piston-and-cylinder apparatus shown in Fig. 3. The
vessel is of three-piece construction. The inner cylinder
is forced into the middle cylinder under a load of about
400 tons, placing the inner cylinder in compression.
The outer cylinder is a soft-iron-pipe safety ring. This

*\V. P. Mason, Physical Acoustics and the Properties of Solids

vessel is capable of containing about 30 kbar pressure.
The top of the vessel is scaled by a standard Bridgman
scal. Load is applied to the piston from a 400-ton
hydraulic ram. The bottom of the vessel is sealed by
a tapercd plug through which the necessary clectrical
leads are brought. Sheathed leads are secaled into a
steel plug with epoxy cement.® The ability of this type
of plug to retain the electrical leads at high pressure
depends in part on the radial force developed as the
plug is forced into the taper at the bottom of the
pressure vessel. Consequently, the clearance allowed at
the bottom of the plug is critical; excessive support of
the plug will result in blowout of the leads. A disad-
vantage of this type of plug design is that it is some-
times difficult to control the quality of the plugs, with
the result that a sheath may be ejected. .

Sonic-velocity experiments were carried out at 21.9°,
40.5°, and 52.9°C. For the higher-temperature experi-
ments the entire pressure vessel was heated. Temper-
ature inside the vessel was determined by a Chromel-
Alumel thermocouple brought through the tapered
bottom plug; its calibration was traccable to a platinum
resistance thermometer. At pressures up to 13 kbar
the calibration of a Chromel-Alumel thermocouple
changes by negligible amount.®? A temperature gradient
of less than 0.3°C existed across the sample at the
higher temperatures; this gradient was found to be
insensitive to pressure. The probable error in the stated
temperature is about =0.25°C.
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Fi16. 3. The pressure vessel (dimensions in inches).

# L. A. Davis, R. B. Gordon, J. K. Tien, and R. J. Vaisnys,
Rev. Sci. Instr. 35, 368 (1964).
2 R. E. Hanneman and H. M. Strong, Symp. High Pressure

(D. Van Nostrand Co., Inc., Princeton, N.J., 1958), p. 40. Technology, ASME Winter Annual Meecting, New York, 1964

% W. P. Mason, Ref. 29, p. 96.

(1964), Paper No. 64 WA/PT-21.
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Pressure was measured with a wire resistance gauge.
Such a gauge must be calibrated against a primary
pressure standard or against pressure-fixed points, such
as phase-transition pressures, which have been them-
selves accurately established relative to a primary
standard. In this work the gauge was a looscly wound
coil of 0.003-in.-diam Au-2.1%, Cr alloy of about 13-
resistance. The details of the gauge preparation and
calibration against a precision frec-piston gauge have
been given elsewhere® The gauge resistance is de-
termined with the aid of a six-dial potentiometer to an
accuracy of 5 ppm, which means that it was possible
to detect a pressure change on the order of 6 bar. The
calibration of the gauge is given in Table 1. The coeffi-
cients given there were obtained by a quadratic least-
squares fit of the gauge-resistance-vs-pressure data.
The standard deviation of the data from the least-
squares curve was 0.00008 £ in approximately 12 Q,
which is equivalent to 6 bar.

There is some difficulty with drift in the calibration
of Au-Cr pressure gauges. A check on the gauge cali-
bration at 21.9°C at the time of the velocity experi-
ments showed that it had drifted by an approximately

Tasre I. Cocliicients of the pressure gauge calibration curve,

AR/Ry=AP+BP-

Temperature A B
(°C) (bar™110-¢) (bar—210713)
21.9 1.070 —4.7
40.5 1.057 —-7.4
52,9 1.044 =62

linear factor of 0.49,=+0.2%, over the eight-month period
between the free-piston-gauge calibration and the ve-
locity experiments in such a way as to make the relative
change of resistance smaller for a given change of
pressure. Since it would have been prohibitively difficult
and expensive to check the calibration at the other two
temperatures, it is assumed that the calibration drifted
in the same way for those temperatures. The calibration
in Table I represents the corrected calibration and
is therefore reliable to about 0.49%,.

RESULTS

I'or the purpose of calculation, the measured pressure
dependence of the sound velocity given in Table IT is
fitted to the cquations

P= A+ Ber+ Der?, (1)
cp=A"+B'P+D'P? (2)
where P is pressure and ¢r is sonic velocity at temper-

ature 7'. Equation (1) is found to give a better fit at
cach T since the standard deviation in cach case is

# L, A. Davis and R. B. Gordon, Rev. Sci. Instr. 38, 371 (1967).
DA MR

TasLE II. Sonic velocity in Hg.»

T'=21.9°C 7=40.5°C T'=42.9°C

Pressure  Velocity Pressure Velocity Pressure Velocity

1 1450.1 1 1441.5 1 1435.8

299 1457 516 1453 464 1447
584 1463 932 1463 925 1457
989 1472 1458 1474 1 485 1469
1276 1478 1930 1484 1942 1478
1.532 1483 2 144 1488 2 511 1490
2 106 1495 2 769 1500 2 537 1491
3 254 1517 3 080 1507 3 019 1500
3 2064 1518 3 893 1522 4 232 1524
3 490 1522 4 298 1530 4 548 1530
4 565 1542 4 483 1533 4942 1537
5772 1564 5 539 1552 5 470 1546
5 907 1566 5 642 1555 6 885 1572
6 138 1570 6 518 1569 6 915 1573
7 542 1594 7 168 1581 7 746 1587
8 310 1606 7 175 1581 8 255 1595
8 858 1615 8 309 1599 9 533 1616
8 950 1616 8 538 1604 9 954 1623
9 894 1632 9 399 1618 10 939 1639
10 695 1644 10 318 1632 11 203 1642
10 926 1648 10 384 1634 11 503 1647
11 485 1656 11 830 1656 11 792 1651
11 532 1657 11 922 1657 12 968 1669
11 985 1664 12 315 1663 13 023 1670
12 035 1665 13 270 1677 13 332 1675

13 709 1684

14 213 1691

14 695 1698

14 921 1701

® Pressure in bars, velocity in meters per second.

about a factor of 3 smaller than for Eq. (2). Equation
(1) presents a more reasonable picture physically since
it predicts a steady increase of velocity with pressure
while Eq. (2) predicts a maximum in ¢r with pressure
and a subsequent decrease. The standard deviations
from the least-squares curve of Eq. (1) for the three
experimental temperatures are shown in Table III along
with the coefficients of the curves. The solid curves in
Tig. 4 represent the least-squares equations.

It is possible to use the sound-velocity data described
above, in conjunction with certain other data, to calcu-
late the specific volume of Hg as a function of 7 and P.
The calculation starts with the relation between the
sound velocity and adiabatic compressibility

Baa= l/P‘;T2 (3)
and the relation
6T=Bad+(Ta2/PCP)) (4)

where fr is isothermal compressibility at temperature 7,

Tasre III. Least-squares cocflicients of the curve P=A-+
Bep+Der® and the standard deviation (o) of the velocity data.

Temperature (°C) 21.9° 40.5° 52.9°
A (barX109) 4.1489 3.9067 4.0715
B (bar per m/secX10?) —1.025 —0.9885 —1.006
C (bar per m3/sec?X1072) 5.096 4.976 5.034
" o (m/sec) 0.2 0.3 03
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F16. 4. The sonic velocity ¢rin liquid Hg as a func-
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T is absolute temperature, « is volume thermal-expan-
sion coefficient, p is density, and Cp is specific heat at
constant pressure. Since

Br=—(1/V)(8V/aP)r= (1/p) (8p/8P)r, (S)
where V is volume, it follows from Eq. (3) that
(0p/0P)r=(1/cr®) +(Ta?/Cp). (6)

Therefore, on integration with respect to P,

7 14 P ol
poa=pat| —dp+1[ Zar, (D)
1 Cr 1 Crp
where p, r is density at 1 atm and T, and pp r is density
at P and 7. Evaluation of the two integrals over a
range of 7 yields p as a function of P and 7. The
integral of 1/c7? at a given temperature can be evaluated
directly from the least-squares velocity curves, using
numerical integration, under the assumption that 1/cs?
varies linearly for small AP= P,— P;. To evaluate the
second integral, two additional relations can be used,

viz.,
(9a/dp)r=—(3Br/dT)p (8)

(9Cp/dP)r=—(T/p)[(0a/0T)p+a*].  (9)

If Bz is known as a function of 7" at P= P,, the initial
slope of the a-vs-P curve may be determined for any
temperature. Then, over the interval AP= Py— Py, the
change of « can be approximated by

ap= (8a/dp)r.p,(P— P1)+ap,
If @ vs T is known at P, a vs T at P, may be found
from (10). Therefore, in (9), (0a/d7)p can be ex-
pressed as

) [ty ()

and

PSPLP. (11)

P<P<P,.  (10)

Using (11) and the square of (10), Eq. (9) may be
integrated analytically to find ACp if p is assumed
constant over AP. This produces a negligible error if
AP is small. On performing the integration, ACp is
found to be very small so that Cp may be assumed
constant for the integration in (7). Only the integral
of a? at each temperature needs then to be evaluated.
This can be found by using the square of (10) and
integrating analytically. The density at P, pp.r is
therefore determined. '

It is apparent that in the course of calculating pp,r
both Cp and o have been determined as a function of
T at P, Clearly, then, 87 may be calculated as a
function of T at P, from Eq. (4). It follows that the
calculation may be now repeated starting with the inte-
gration of 1/cr? over the interval AP= P;— P, and the
determination of (0a/dT)p at Py from Eq. (8). By
continual repetition of these calculations all the quan-
tities Br, @, Cp, p, and B.g may be determined as a
function of temperature and pressure. In the experi-
ments described above the change of velocity with

TaBLE IV. One-atmosphere input data to the
compression calculation.

Temperature, ¢ (°C) 21.9° 40.5° 52.9°
Density, p (g/cm®)® 13.54122 13.49373 13.46551
Thermal-expansion 1.81069 1.80825 1.80699
coeflicient, «
(°C1 X104

Specific heat, Cp 1.390 1.385 1.382
(ergs/g-degX1076)e

Sonic velocity ¢p 1450.1 1441.5 1435.8

(m/sec)d

8 Reference 36.
b Reference 35.
¢ Reference 34.
d Reference 27,
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TaBLE V. Calculated variables.

Isothermal Thermal- Adiabatic
compres- expansion compres-
Pressure sibility coeflicient Density Volume sibility
B Br a P ¥ Bua
(kbar) (bar™¥) (°C™) (g/cm?®) (V=1.0at 0°C) (bar™?)
T=21.9°C
1 3.881X107% 1.766X 1074 13.3948 1.00000 3.395X10-¢
2 3.751 1.724 13.6468 0.99621 3.289
3 3.632 1.685 13.6973 0.99254 3.192 v
4 3.522 1.648 13.7463 0.98900 3.102 2
5 3.419 1.614 13.7941 0.98557 3.018 P
6 3.324 1.581 13.8407 0.98225 2.941
7 D20 1.551 13.8862 0.97904 2.808 ?
8 G ) 1,52 13.931 0.9759 2.799 s
9 3.07 1.50 13.974 0.9729 2.735 £
10 3.00 1.47 14.017 0.9699 2.674 0
11 2.93 1.45 14.058 0.9671 2.616 .
12 2.87 1.42 14.099 0.9643 2.562
13 2.80 1.40 14.139 0.9615 2.510
7/ T=405°C
1 3.963X10-% 1.762X10m 13.5503 1.00330 3.444X10-¢
2 3.827 1719 13.6032 0.99941 3.334
3 3.702 1.680 13.6545 0.99565 3.234
4 3.587 1.643 13.7043 0.99203 3.141
5 3.481 1.608 13.7528 0.98853 3.035
(9] 3.383 1.576 13.8001 0.98514 2.975
T 3.290 1.545 '13.8462 0.98186 2.900
8 3.20 1.52 13.891 0.9787 2.829
9 3.12 1.49 13.935 0.9756 2.763
10 3.05 1.46 13.978 0.9726 2.701
ol | 2.98 1.44 14.020 0.9697 2.641
12 291 1.41 14.062 0.9668 2.585
13 2.84 1.39 14.102 0.9640 2.532
T'=52.9°C
1 4.018%10-¢ 1.760 X104 13.5207 1.00550 3.477X108
2 3.878 1.717 13.5742 1.00154 3.365
3 3.749 1.677 13.6261 0.99773 3:262
4 ' 3.632 1.640 13.6764 0.99405 3.167
S 3:523 1.605 13.7254 0.99050 3.080
6 3.422 1.572 13.7732 0.98707 2.998
7 3.327 1.542 13.8197 0.98375 2.921
8 3.24 1.51 13.865 0.9805 2.850
9 3.16 1.48 13.910 0.9774 2.782
10 3.08 1.46 13.953 0.9743 2.719
1d! 3.01 1.43 13.995 0.9714 2.659
12 2.94 1.41 14.037 0.9685 2.602
13 2.87 1.39 14,078 0.9657 2.548

pressure, for three temperatures, has been established
while the change of velocity with temperature at 1 atm
is given by Hubbard and Loomis.*” The values for Cp
at 1 atm and various temperatures are given by Douglas
el al to an accuracy of 0.3%. Values for a at atmos-
pheric pressure and 7" have been taken from the work
of Beattie e/ al.,*® which establishes @ within about 1
part in 10°. The density p is given by Bigg,*® who used
the most recent determination of the density of Hg at

%7, B. Douglas, A. F. Ball, and D. C. Ginnings, J. Res. Natl.
Bur. Std. 46, 334 (1951). 3

% J, A. Beattie, B. E. Blaisdell, J. Kaye, H. T. Gerry, and C. A.
Johnson, Proc. Am. Acad. Arts Sci. 74, 371 (1941).

w b, H. Bigg, Brit. J. Appl. Phys. 15, 1111 (1964).

20°C, in conjunction with Beattie’s expansion formula,
to determine p as a function of temperature to within
about 4 ppm. Using the data for p and the sonic-
velocity data of Hubbard and Loomis, the adiabatic
compressibility of liquid Hg may be calculated accord-
ing to Eq. (3). Using 8.4, and « and Cp from the above
sources, By may be calculated according to Eq. (4).
All the data are thus established for the initiation of
the calculation at ;=1 atm. The numerical values of
the input data are shown in Table 1V.

The results of the calculation for e, Bz, 8aq, p, and V
as a function of P at 21.9°, 40.5°, and 52.9°C are
shown in Table V. Figures 5-7 show the variation of
a, By, and V with pressure. No variation of Cp with P
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F1c. 5. The volume thermal-expansion coeflicient & of liquid
Hg vs pressurc at several temperatures. Considering experimental
error, the three curves are actually just barely distinguishable
from one another.

greater than experimental error is detected, hence its
calculated variation with pressure has not been shown
in a table or graph.

The procedure adopted here for estimating the prob-
able error associated with each of the calculated results
is to place various perturbations on the input data for
the calculation and to observe its effect on the results.
Since the three major sources of uncertainty in the
present work are the results of the experimental de-
termination of sonic velocity as a function of pressure,
the 1-atm velocity data of Hubbard and Loomis, and
the Cp data of Douglas ef al., three perturbations, each
involving only one of these variables, are investigated.
The uncertainties in @ and p at atmospheric pressure
and in the temperature are negligible in comparison.
The errors in Br and Ba.a at atmospheric pressure are
taken into account automatically by considering the
three major uncertainties.

To account for the errors in the velocity experiments,
all the uncertainty may be assumed, for convenience,
to be in the pressure scale. The possible systematic
error in the scale itself is of the order of 0.4%,. To this
must be added a measure of the random uncertainty as
indicated by the standard deviation ¢ of the velocity
data from the least-squares curves. The equivalent of
this ¢ on the pressure scale is about 17 bars. This un-
certainty varies in percentage over the pressure scale,
but a reasonable average is 0.3%. The total uncertainty
on the pressure scale is therefore about 0.7%. In accord-
ance with this, the least-squares velocity curve at 21.9°C

DAVIS AND R. B,
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was adjusted so that a given velocity would correspond
to a pressure higher than the experimentally determined
value by 0.7%, and the 52.9° data was adjusted to
predict a pressure lower by 0.7%. This adjustment
may be made by multiplying the cocfficients of the
least-squares curves by an appropriate constant. The
curve at 40.5°C was unadjusted. This perturbation can
also be viewed as an adjustment of the slope of ¢p vs T
at each pressure. Since the perturbation involves a
change of slope rather than a uniform increase or
decrease of the data, it will affect the results for the
three temperatures differently at a given pressure.
Choosing the maximum effect should give a reliable
estimate of the largest likely error.

The effects on a, Br, V, and Cp of performing the
calculation with the perturbation on the pressure scale
are shown in Table VI. They are shown only for 13 kbar
for the sake of brevity. To a first approximation the
effect of the perturbation on each quantity decreases
linearly, with decreasing pressure, to its value at 1 atm.
Since the calculated change in Cp for each temperature
was about 0.25%, at 13 kbar, it follows, according to
the effect of the perturbation on Cp (about £0.75%,),
that no information can be gained from the present
work regarding the sign of change or rate of change of
Cp with pressure.

The second perturbation on the data was constructed
by reducing the value of Cp at 1 atm and 21.9°C by
0.3% and by raising it 0.39, at 52.9°. The third pertur-
bation was obtained by decreasing the sonic velocity
at 21.9° and 1 atm by 0.02%, and by raising it at 52.9°C
by the same percentage. The effects on «, Cp, Br, and V
of carrying out the calculations with these perturbations
are also shown in Table VI. An estimate of the uncer-
tainty of each quantity is then obtained by taking the
sum of the perturbation effects, and it amounts to
+0.49, for Br, £1.09% for a, +=1.3% for Cp, and
+0.0094% for V. Once again, to a first approximation,

4.2
4.1
4.0
3.9
3.8
3.7

3.6
3.5
3.4
3.3
3.2
3.1

Isothermal  Compressibility (mbar™")

3.0
21.8°C
2.9
2.8 1 1 1 1 L 1 rt 1 1 L 1 A
O I 2 3 4 5 6 78 9 101U 1213

Pressure {kbar)

F1c. 6. The isothermal compressibility g7 of liquid Hg as a
function of pressure at several temperatures.
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the uncertainty- in each quantity decreases lincarly
with decreasing pressure to its value at 1 atm. These
have been listed previously, except for Bz, for which it
is 0.8%. _ '

Sclection of the appropriate value of the interval
AP to be used in the calculation of the thermodynamic
variables is a matter of trial and error. It was found
that.there was no need to use an interval smaller than
125 bar. The residual error for each variable which
results from using this interval is between one and two
orders of magnitude smaller than the uncertainty of the
variable.

The thermodynamic calculations which have been
described were programmed for an IBM 1620 computer.
In order to compute the derivatives (88/07T)p and
(0a/dT)p of Egs. (8) and (9), respectively, it was
necessary to fit curves by the least-squares method to
the Br-vs-T and a-vs-T" data at each step of pressure.
Curves of the type

Br=A+BT+GT* (12)
and
a=D+ET+FT? (13)

are chosen since they accurately describe the variation
at 1 atm of Br and & with T over the range of 0°~100°C.
The suitability of these equations for fitting the tem-
perature data at higher pressures can be easily checked
as the calculation proceeds, and, if necessary, different
equations could be used over different intervals of
pressure. In the present work the use of a quadratic
in T leads to a perfect fit since there are only three data
points with temperature variation; since the data dis-
play a definite curvature, use of a straight line would
not be suitable.

Each of the three perturbations described above left
the data at 40.5°C unperturbed, while the data at 21.9°
and 52.9° were adjusted in opposite directions. The
perturbations were purposely chosen this way to maxi-
mize the variation in the derivatives (88/07)p and
(da/dT)p and thus establish the maximum likely un-
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1
I 2 3 4 5 6 7 8 9 10 0l 12 13 14
Pressure  (kbar)

certainty in the calculated results. The largest uncer-
tainties occur in « and Cp because of their strong de-
pendence on these derivatives through Egs. (8) and
(9), respectively. The uncertainty in Sr is smaller
because the uncertainties of « and Cp affect it only
through the additive term in Eq. (4), Ta?/pCp, which is
about 109, of Br. The volume is obtained with high
accuracy because it involves the uncertainties in the
velocity data and « and Cp through the small additive
integrals in Eq. (7). The accuracy of B.a is afiected
mainly by the uncertainty in the sonic velocity since
the volume is quite accurate, and thus it is accurate to’
about 0.149,.

DISCUSSION

High accuracy in pressure measurement can only be
attained below about 13 kbar where calibration against
free-piston gauges is possible. The possibility that more
precise volume data at very high pressure may be
obtained by appropriate extrapolation of relatively pre-
cise data taken below 13 kbar than by direct measure-
ment has been pointed out by Anderson.” For this
reason it is of interest to consider the question of the
best analytical representation of experimental P—V
data. The precision volume results for Hg provide an

TasLe VI. Magnitude of the perturbation effects on the
calculated variables at 13 kbar.»

Variable ﬁ T @ C}’ 14

Cp perturbation 0.07 0.2 0.30 0.0019

Pressure scale perturba- 0.26 0.6 0.75  0.0057
tion

One-atmosphere velocity

perturbation 0.07 0.2 0.25 0.0018
Total 0,40 1.0 1.3 0.0094
3 In percent.

% 0. L. Anderson, J. Phys. Chem. Solids 27, 547 (1966).
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opportunity for testing the usefulness of various iso- and
thermal P-V equations. EP
To be uscful in the representation of P-V data for a ————=B,(B/—1),
d(Vo/ V) vy,

given phase, an equation must be single valued and
continuous for all pressures, ¥V must be greater than
zero but decrease for all P, and dV/d P must decrease
continuously. These conditions suppose no phase
changes under pressure; if phase changes occur, the
extrapolation method is no longer useful. Of equations
satisfying the above conditions, the most satisfactory
will be that which can best fit existing data with the
smallest number of fitting coefficients. A further de-
sirable property is that the coefficients be directly re-
lated to some physical property of the material con-
sidered.

A direct approach to developing a P-V equation
would be to express the Helmholtz free energy as a
power series in ¥ and use the relation P=— (dF/3V ).
An equivalent, and easier, method is to use a Taylor
scries expansion of the pressure in terms of the volume.
The expression for F then follows from integration of
P with respect to V.

Considering the conditions listed above for a pres-
sure-volume equation, a likely choice is to expand the
pressure in powers of V,/V, about V,/V=1 or V="V,.
This expression, up to the quadratic term, is

P=d(Vo711;) V=V, (K" 1)

1 a*pP (Vo

2 A(Vo/ V) ey, \V

1)2_{...., (14)

where V, 1s initial volume. The cocflicients of the ex-
pansion can be written as
apr
d(Vo/V)vay,

o

where B; is the bulk modulus at 1 atm and B, is the
derivative of the bulk modulus with respect to pressure,
evaluated at 1 atm. Equation (14) can be expressed,
therefore, as

P=B,(AV/V)+3B.(B,/— 1) (AV/V)* -+, (15)

where AV = (V,— V). This equation meets the require-
ments listed above since it is single valued and con-
tinuous, and it predicts a volume which steadily de-
creases at a decreasing rate with increasing pressure
but always remains real and positive, provided that
B,/ is greater than 1.

A related but alternate approach has been suggested
by Onat® and by Vaisnys* whercby the pressure is
cxpanded in powers of In¥V about V=V,:

P= (dP/d an)v_V,(an—ano)
+3(d*P/d nV?)yy,(InV—InVo) 4+ (16)

Again, the coefficients may be expressed in terms of
B, and B,’, viz.,

(dP/d1nV)y—v,=—DB,
and
(d2P/d InV2)yy,= B,B.,
so that Eq. (16) may be written as
=—B,In(V/V,)+31B.B,/[In(V/V,) P+-+-. (17)

This equation also meets the requirements listed above.

A number of other equations to describe the pressure-
volume relations of materials have been proposed by
various investigators. Bridgman expressed a great deal

#E, T. Onat (privq.te communication).
¥ R. J. Vaisnys (private communication).
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of his compression data with a Taylor-serics expansion
of V' in powers of P about P=0 (the rest he put in
tabular form):

V=Vot(dV/dP)rooP+3(EV/dP?)ps P2, (18)

where
(dV)dP) peo=—V,/B,
and

(1/‘-'V/(1]>2)P=0= Vo(1+Bol)/BOE'

Ie found that, within the accuracy of his data, this
cquation gave a good representation of the compression
of many substances. Recently Anderson and Schreiber®©
have determined the values of By, By, and B,”, where
B, is the sccond derivative of-the bulk modulus evalu-
ated at 1 atm, for polyerystalline magnesium oxide.
They used this data in conjunction with Eq. (18),
expanded to include the additional terms in P? and P4,
to express the cquation of state of MgO. Examination
of this type ol expansion, however, shows that it does
not meet all the stipulations required for a satisfactory
P-V relation. Since the coefficients of all the odd
powers of P will be negative and the coefficients of
all the even powers will be positive, the expansion
predicts that the volume will approach negative infinity,
with increasing pressure, if it is cut off at an odd power
of 2 and that it will approach positive infinity when
the last term: involves an even power of P. In the
latter case the volume will also be a double-valued
function of the pressure.

In another approach to a P~V equation, Murnaghan®
has suggested expanding the bulk modulus as a function

035
0.34
033
032
031
030
029
0.28
027
0.26
025
024

Bulk Modulus  (mbar)

Isothermal

0 I 2 3 4 5 6 7 8 9 101l 1213
Pressure  [kbar)

T16. 9. The isothermal bulk modulus B of liquid Hg vs pres-
sure at several temperatures.

“©0. L. Anderson and E. Schreiber, J. Geophys. Res. 70,
5241 (1965).

4T, D. Murnaghan, Proc. Symp. Appl. Math., Brown Uni-
versity, Providence, R.I., 1947 1, 167 (1949).

TaBLE VII. Bulk modulus of Hg.»

T (°C)
P (kbar)

21.9° 40.5° 32.9°
0 248.4 243.1 239.6
1 257.6 252.4 248.9
2 266.6 261.3 257.9
3 275.3 270.1 266.7
4 284.0 278.7 275.4
5 292.5 287.3 283.9
6 300.8 295.6 292.3
il 3009.1 303.9 300.5

8 317 312 309

9 325 320 317

10 333 328 325

11 341 336 333

12 349 344 341

13 357 352 348

® Units of kilobars,

of P, according to the relation
B=—V(dP/dV)=B,+B,P. (19)

On integration this gives the so-called “Murnaghan
logarithmic equation,”

In(V,/V) = (1/B.) {In[(B.+B,'P)/B,]}, (20)

which satisfies the listed requirements. Equation (19)
can be expanded to include terms of higher power in
the pressure, but this may lead to peculiarities in the
resulting pressure-volume expression: If the bulk mod-
ulus expression is expanded, for example, to include B,”
and this coeflicient is negative, the bulk modulus will
eventually pass through a maximum with pressure and
then become negative. Birch#% has used Murnaghan’s*
theory of finite strain and a series expansion of F in
terms of V to derive the equation d

P=4BL(Vo/ V)™= (Vo/ V)51 1= (Ve/ V)¥3—11},
(21)

where
£=$(4—B.).

Since the definition of strain (for strains larger than
infinitesimal) is arbitrary, this equation has no par-
ticularly unique relation to elasticity theory. It does
meet the requirements for an equation of state listed
at the beginning of this section, provided B, is greater
than 4.

Each of the equations enumerated above has been
tried against the Hg volume data. B, is fixed at its
independently determined value at P=0. Each of the
equations then has only one adjustable parameter,
which may be expressed in terms of B,'; this is chosen
to give a minimum standard deviation. The deviations
of these equations from the volume data are shown in

«F. Birch, J. Appl. Phys. 9, 279 (1938).

4 F, Birch, Phys. Rev. 71, 809 (1947).
4F. D. Murnaghan, Am. J. Math. 59, 235 (1937).
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_Tasre VIIL Standard deviation (o) for the cquations of state
(in terms of V/V,) and the pressure derivative of the bulk
modulus (By").

Equation 21.9°C  40.5°C 52.9°C

o (unitless)
Quadratic (V/Ve=1+4aP--bP%) 235106 250 260

Cubic (V/Vo=14aP+bP*+cP%) 18 20 21
Murnaghan’s equation (20) 38 40 42
Birch’s equation (21) 10 11 12
(17) 29 31 32

+ (15) 8- 9 9

By (unitless)

Murnaghan’s equation (20) 8.70 8.72 8.74
Birch’s equation (21) 9.10 9.14 9.17
(17) 9.72 9.78  9.81
(13) 9.38 9.44  9.47

Tig. 8. This figure specifically pertains to the volume
data at 21.9°C, but the results at 40.5° and 52.9°C are
almost identical. The straight lines shown at an angle
to the zero deviation line represent the probable limits
of error of the volume data less any systematic error
in the pressure scale since this would not influence the
fit of the various equations tested. It has already been
indicated that, on general grounds, Eq. (18) is a poor
choice as an cquation of state, but in addition, as
Tig. 8 shows, it gives a very poor fit to the present
data. The cubic expansion of V in terms of P (AV/V,=
aP+bP*+CI»®) was also fitted and found not to give
a very good representation of the data, and of course
the cquation begins to diverge strongly toward negative
infinity at pressures slightly above the experimental
range. Equations (15) and (21) each represent the
data with the use of only one adjustable parameter;
each predicts a reasonable extrapolation of the volume
to higher pressures. Murnaghan’s logarithmic equation
(20) and Eq. (17) do not provide an adequate repre-
sentation of the volume change with pressure. In the
case of Murnaghan’s equation, this indicates that the
bulk modulus of Hg does not vary linearly with P to
13 kbar. Figure 9 shows that the bulk modulus B does
indeed deviate slightly from linearity with pressure.
By obtaining a least-squares fit of a straight line
(Bo+B,'P) to the bulk-modulus data and noting the
deviations of the data from this line, it was confirmed
that the curvature of B is outside experimental crror.
The bulk-modulus data is also shown in Table VII.
Table VIIT lists the standard deviations of the equa-
tons tested and also B,’ for Murnaghan’s equation,
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for Eq. (17), and for the two cquations which best
represent the data.

In summary, it is seen that two equations give a
good fit to the volume data: Eq. (15), an expansion of
P in terms of V,/V, and the Birch cquation (21).
The Murnaghan and Bridgman cquations arc not satis-
factory, and the latter is not suitable for extrapolation.
No one of these equations has more theoretical justifi-
cation than another. Considering its simplicity, LEq.
(15) is the most satisfactory analytical representation
of the P-V data which satisfics all of the criteria es-
tablished above. It does not appecar to have been used
for this purpose before. If a third term were required
in this equation, it would be

1 &P

3 d(V, /V)3= 1[2B,~ 3B, B,+ (B.)?*B,+B,"B2].

The method of calculation which has heen developed
for the analysis of the mercury data can casily be modi-
fied to be applicable to isotropic solids. The principal
difference is that, whereas the length of the liquid
sample is known at all pressures, that of the solid is
not. Letting the ratio of the initial length of an isotropic
solid sample to the length at pressure P be S, i.e.,

S=1/l= (p/po) ", (22)
it can be shown that
s - i ipr
=1 /
t ), T3 (/n) —a(1/6)]
T P ot

—dP 23
+3p052[0 = dp, (29)

where 4 and £, are the transit times for longitudinal
and shear wave pulses, respectively. In this case so-
lution of the two integrals gives S and, from Eq. (22),
p as well as the sonic velocities. The quantity .S appears
outside of the integral in the second term of Eq. (23);
this is correct if the integral is evaluated over a small
interval A P within which .S may be considered constant,
analogous to the procedure used with the liquid.
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